# SPEC for Mass Production

| Spec No. | TQ3C-8EAF0-E1YAG67-01 |
|----------|-----------------------|
| Date     | August 29, 2024       |

### TYPE: TCG104VGLCCANN-AN41

<10.4 inch VGA transmissive color TFT with LED backlight>

#### **CONTENTS**

- 1. Application
- 2. Construction and outline
- 3. Mechanical specifications
- 4. Absolute maximum ratings
- 5. Electrical characteristics
- 6. Optical characteristics
- 7. Interface signals
- 8. Input timing characteristics
- 9. Lot number identification
- 10. Warranty
- 11. Precautions for use
- 12. Reliability test data
- 13. Outline drawing



### KYOCERA CORPORATION

| Original         | Designed by: Engi | neering dept. |          | Confirmed by:<br>QA dept. |
|------------------|-------------------|---------------|----------|---------------------------|
| Issue Date       | Prepared          | Checked       | Approved | Approved                  |
| January 22, 2018 | K. Komurasaki     | T. Fukui      | M. Kato  | T. Sawada                 |



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | -    |

## Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs, and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

#### Caution

- 1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.
- 2. Please note that we may not be able to respond to new environmental regulations after receiving the final mass production order for this product.



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | -    |

# Revision record

|                 |               |        | Trevi      | sion reco                                 | <u>r u</u>         |                        |
|-----------------|---------------|--------|------------|-------------------------------------------|--------------------|------------------------|
|                 | Date          | Design | ed by : En | gineering dept.                           |                    | Confirmed by: QA dept. |
|                 |               | Pre    | epared     | Checked                                   | Approved           | Approved               |
| August 29, 2024 |               | K. Ko. | murasaki   | T. Fukui                                  | M. Kato            | T. Sawada              |
| Rev. No.        | Date          | Page   |            | De                                        | escriptions        | 1                      |
| 01              | Aug. 29, 2024 | Cover  | Change th  | ne company name f                         | from KYOCERA       | DISPLAY                |
|                 |               | page   | CORPOR     | ATION to KYOCE                            | RA CORPORATI       | ON.                    |
|                 |               | 1      |            | nical specification                       | c · ·              | 1                      |
|                 |               | 1      |            | dimension: Change                         |                    |                        |
|                 |               | 4      |            | tant current circuit<br>consumption: Chai |                    |                        |
|                 |               |        | values.    | consumption. Chai                         | nge from provisio  | onar to omenar         |
|                 |               | 5      |            | ning Diagram                              |                    |                        |
|                 |               |        | Revise th  |                                           |                    |                        |
|                 |               | 6      |            | characteristics                           |                    |                        |
|                 |               |        |            | ess and Chromatici                        | ty coordinates: C  | hange from             |
|                 |               |        | provisiona | al to official values                     | •                  |                        |
|                 |               | 7      | 6-4. Brigh | tness measuring p                         | oint               |                        |
|                 |               |        |            | the figure and desc                       | ription.           |                        |
|                 |               | 9      |            | ng Characteristics                        |                    |                        |
|                 |               |        |            | ne note numbers.                          |                    |                        |
|                 |               | 11     |            | nber identification                       |                    |                        |
|                 |               |        |            | ta matrix and revi                        | se the description | n.                     |
|                 |               | -      | Revise the | e outline drawing.                        |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        |            |                                           |                    |                        |
|                 |               |        | 1          |                                           |                    |                        |



| Spec No.     |            | Part No.            | Page |
|--------------|------------|---------------------|------|
| TQ3C-8EAF0-I | E1YAG67-01 | TCG104VGLCCANN-AN41 | 1    |

## 1. Application

This document defines the specification of TCG104VGLCCANN-AN41. (RoHS Compliant)

### 2. Construction and outline

LCD : Transmissive color dot matrix type TFT

Backlight system : LED

Polarizer : Anti-Glare treatment

Additional circuit : Timing controller, Power supply (3.3V input)

(with constant current circuit for LED Backlight)

### 3. Mechanical specifications

| Item                  | Specification                                     | Unit |
|-----------------------|---------------------------------------------------|------|
| Outline dimensions 1) | 230(W)×180.2(H)×10.5(D)                           | mm   |
| Active area           | 211.2(W)×158.4(H)<br>(26.4cm/10.4 inch(Diagonal)) | mm   |
| Dot format            | 640×(R,G,B)(W)×480(H)                             | dot  |
| Dot pitch             | 0.11(W)×0.33(H)                                   | mm   |
| Base color 2)         | Normally White                                    | -    |
| Mass                  | 500                                               | g    |

- 1) Projection not included. Please refer to outline for details.
- 2) Due to the characteristics of the LCD material, the color varies with environmental temperature.



#### 4. Absolute maximum ratings

#### 4-1. Electrical absolute maximum ratings

| Item                  |    | Symbol            | Min. | Max.    | Unit |
|-----------------------|----|-------------------|------|---------|------|
| Supply voltage(+3.3V) |    | $V_{ m DD}$       | 0    | 4.0     | V    |
| Supply voltage(+24V)  |    | $V_{\mathrm{IN}}$ | -0.3 | 26      | V    |
|                       | 1) | $V_{I1}$          | -0.3 | VDD+0.3 | V    |
| Input signal voltage  | 2) | $V_{I2}$          | -0.3 | VDD+0.3 | V    |
|                       | 3) | $V_{I3}$          | -0.3 | 14      | V    |

- SC
- 2) RxIN0-/+、RxIN1-/+、RxIN2-/+、RxIN3-/+、CK IN-/+ BLBRT, BLEN

#### 4-2. Environmental absolute maximum ratings

| Item                            |    | Symbol             | Min. | Max. | Unit                 |
|---------------------------------|----|--------------------|------|------|----------------------|
| Operating temperature (Ambient) | 1) | $T_{OP}$           | -30  | 80   | $^{\circ}\mathrm{C}$ |
| Operating temperature (Panel)   | 2) | $T_{\mathrm{OP}}$  | -30  | 80   | $^{\circ}\mathrm{C}$ |
| Storage temperature             | 3) | $T_{\mathrm{STO}}$ | -30  | 80   | $^{\circ}\mathrm{C}$ |
| Operating humidity              | 4) | $H_{\mathrm{OP}}$  | 10   | 5)   | %RH                  |
| Storage humidity                | 4) | ${ m H}_{ m STO}$  | 10   | 5)   | %RH                  |
| Vibration                       |    | -                  | 6)   | 6)   | -                    |
| Shock                           |    | -                  | 7)   | 7)   | -                    |

- 1) Operating temperature means a temperature which operation shall be guaranteed. Since display performance is evaluated at 25°C, another temperature range should be confirmed.
- 2) Panel / Backboard surface temperature (all the surface)
- 3) Temp. = -30°C < 48h, Temp. = 80°C < 168h

Store LCD at normal temperature/humidity. Keep them free from vibration and shock. An LCD that is kept at a low or a high temperature for a long time can be defective due to other conditions, even if the low or high temperature satisfies the standard.

(Please refer to "Precautions for Use" for details.)

- 4) Non-condensing
- 5) Temp. ≤ 40°C, 85%RH Max.

Temp. > 40°C, Absolute humidity shall be less than 85%RH at 40°C.

6)

| Frequency       | 10∼55 Hz | Acceleration value          |
|-----------------|----------|-----------------------------|
| Vibration width | 0.15mm   | $(0.3\sim 9 \text{ m/s}^2)$ |
| Interval        | 10-55-10 | Hz 1 minutes                |

2 hours in each direction X, Y, Z (6 hours total)

EIAJ ED-2531

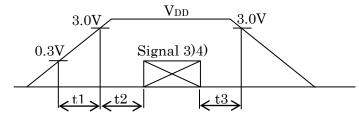
7) Acceleration: 490 m/s<sup>2</sup>, Pulse width: 11 ms

3 times in each direction:  $\pm X$ ,  $\pm Y$ ,  $\pm Z$ 

 $\hbox{EIAJ ED-}2531$ 



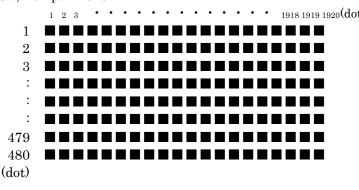
| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 3    |


### 5. Electrical characteristics

### 5-1. LCD

Temp. =  $-30 \sim 80$ °C

|                                 |    |                     | ,                     |                      | 1    | Temp. 90                    | 00 0    |
|---------------------------------|----|---------------------|-----------------------|----------------------|------|-----------------------------|---------|
| Item                            |    | Symbol              | Condition             | Min.                 | Тур. | Max.                        | Unit    |
| Supply voltage                  | 1) | $V_{\rm DD}$        | -                     | 3.0                  | 3.3  | 3.6                         | V       |
| Current consumption             |    | $I_{\mathrm{DD}}$   | 2)                    | -                    | 210  | 270                         | mA      |
| Permissive input ripple voltage | 9  | $V_{\mathrm{RP}}$   | V <sub>DD</sub> =3.3V | -                    | -    | 100                         | mVp-    |
| To sook of our all on the our   | 2) | $V_{\mathrm{IL}}$   | "Low" level           | 0                    | -    | 0.2VDD                      | V       |
| Input signal voltage            | 3) | $V_{\mathrm{IH}}$   | "High" level          | 0.8VDD               | -    | $V_{\mathrm{DD}}$           | V       |
| T , 1 1                         | 2) | $I_{OL}$            | V <sub>13</sub> =0V   | -10                  | -    | 10                          | $\mu$ A |
| Input leak current              | 3) | $I_{\mathrm{OH}}$   | V <sub>I3</sub> =3.3V | -                    | -    | 350                         | $\mu$ A |
| Differential input voltage      | 4) | $ V_{\mathrm{ID}} $ | -                     | 100                  | -    | 600                         | mV      |
| Differential input              | 4) | $ m V_{TL}$         | "Low" level           | -100                 | -    | -                           | mV      |
| threshold voltage               |    | $V_{\mathrm{TH}}$   | "High" level          | -                    | -    | 100                         | mV      |
| LVDS Common mode voltage        | 4) | $V_{\rm ICM}$       |                       | V <sub>ID</sub>   /2 | 1.2  | 2.4-   V <sub>ID</sub>   /2 |         |
| Terminator                      |    | $R_1$               | -                     | -                    | 100  | -                           | Ω       |

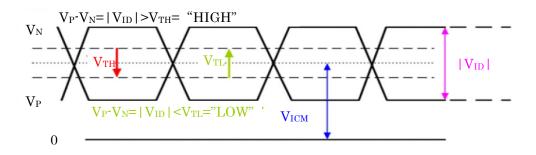

### 1) $V_{DD}$ -turn-on conditions



$$0 < t1 \le 20 ms$$
  
 $0 < t2 \le 50 ms$   
 $0 < t3 \le 1s$ 

# 2) Display pattern:

$$V_{DD} = 3.3V$$
, Temp. = 25°C




# 3) Input signal: SC



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 4    |

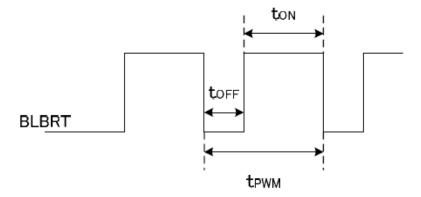
4) Input signal: RxIN3+, RxIN3-, RxIN2+, RxIN2-, RxIN1+, RxIN1-, RxIN0+, RxIN0-CK IN+, CK IN-



# 5-2. Constant current circuit for LED Backlight

Temp. =  $-30 \sim 80$ °C

| Item                            | Symbol                      | Condition               | Min. | Тур.   | Max. | Unit       |
|---------------------------------|-----------------------------|-------------------------|------|--------|------|------------|
| Supply voltage 1)               | $V_{\mathrm{IN}}$           | -                       | 22.8 | 24.0   | 25.2 | V          |
| Current consumption             | $I_{\rm IN}$                | 2)                      | -    | 280    | 400  | mA         |
| Permissive input ripple voltage | $V_{\mathrm{RP\_BL}}$       | V <sub>IN</sub> =24.0V  | -    | -      | 100  | mVp-p      |
| DI DDT Input signal valtage     | $V_{\rm IL\_BLBRT}$         | "Low" level             | 0    | -      | 0.8  | V          |
| BLBRT Input signal voltage      | $V_{\rm IH\_BLBRT}$         | "High" level            | 2.3  | -      | 13.2 | V          |
| BLBRT Input pull-up resistance  | D.,, n., n.,                | $V_{IN} = 24.0V$        | -    | 10     | -    | $k\Omega$  |
| BLBR1 Input pun up resistance   | Rin_blbrt                   | V <sub>IN</sub> =0V     | -    | 1.6    | -    | $k\Omega$  |
| BLEN Input signal voltage       | V <sub>IL_BLEN</sub>        | "Low" level             | 0    | -      | 0.8  | V          |
| BLEN input signal voltage       | $V_{\rm IH\_BLEN}$          | "High" level            | 2.3  | -      | 13.2 | V          |
| BLEN Input pull-up resistance   | D                           | $V_{\rm IN}$ =24.0 $V$  | -    | 10     | -    | $k\Omega$  |
| BLEN input pun up resistance    | R <sub>IN_BLEN</sub>        | V <sub>IN</sub> =0V     | -    | 1.6    | -    | $k\Omega$  |
| PWM Frequency 3)                | ${ m f}_{ m PWM}$           | -                       | 200  |        | 10k  | $_{ m Hz}$ |
|                                 |                             | f <sub>PWM</sub> =200Hz | 1    |        | 100  | %          |
| PWM Duty ratio 3)               | $\mathrm{D}_{\mathrm{PWM}}$ | f <sub>PWM</sub> =2kHz  | 10   | -      | 100  | %          |
| 2 = 30, 2000                    | 21 11111                    | f <sub>PWM</sub> =10kHz | 50   | -      | 100  | %          |
| On anothing life time (1) (1)   | TT.                         | Temp.=25° C             | -    | 70,000 | -    | h          |
| Operating life time 4), 5), 6)  | Т                           | Temp.=70° C             | -    | 53,000 | -    | h          |


1) V<sub>IN</sub>-turn-on conditions

2)  $V_{IN} = 24V$ , Temp. = 25°C,  $D_{PWM} = 100\%$ 



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 5    |

### 3) PWM Timing Diagram



Please do not set toff with  $0 \mu s < toff < 1 \mu s$ .

In case of lower frequency, the deterioration of the display quality, flicker etc., may occur.

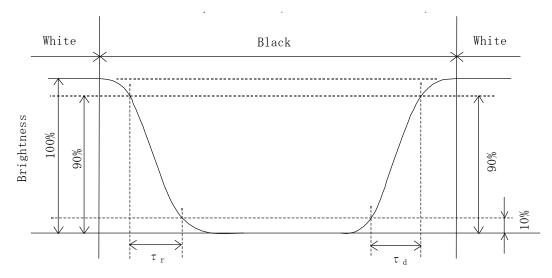
- 4) When brightness decrease 50% of minimum brightness.

  The average life of a LED will decrease when the LCD is operating at higher temperatures.
- 5) Life time is estimated data. (Condition: IF=78mA, Duty=90%, Ta=25°C in chamber).
- 6) Design value of LED



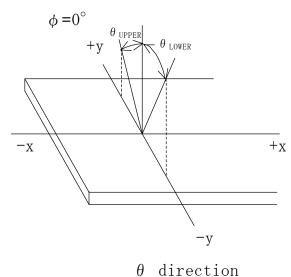
| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 6    |

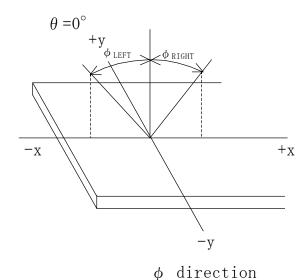
# 6. Optical characteristics


Measuring spot =  $\phi$  6.0mm, Temp. = 25°C

|                                 |            |                             |                             |       | Jaring spot | Ψ 0.0111111, 1 | ,        |
|---------------------------------|------------|-----------------------------|-----------------------------|-------|-------------|----------------|----------|
| Item                            |            | Symbol                      | Condition                   | Min.  | Тур.        | Max.           | Unit     |
| D                               | Rise       | Τr                          | $\theta = \phi = 0^{\circ}$ | -     | 10          | -              | ms       |
| Response time                   | Down       | τd                          | $\theta = \phi = 0$ °       | -     | 20          | -              | ms       |
| T7: 1                           |            | $\theta$ upper              |                             | -     | 60          | -              | 1        |
| Viewing angle<br>View direction | _          | $\theta$ lower              | CD > 10                     | -     | 70          | -              | $\deg$ . |
| : 6 o'cloc                      |            | $\phi$ LEFT                 | CR≧10                       | -     | 70          | -              | 1        |
| (Gray in                        | version)   | ф right                     |                             | -     | 70          | -              | deg.     |
| Contrast ratio                  |            | CR                          | $\theta = \phi = 0$ °       | 350   | 500         | -              | -        |
| D : 1.                          |            | L                           | IF=78mA/Line<br>Duty=100%   | 770   | 1,100       | -              | cd/m²    |
| brightness                      | Brightness |                             | IF=78mA/Line<br>Duty=90%    | 700   | 1,000       | -              | cd/m²    |
|                                 | Red        | X                           | $\theta = \phi = 0^{\circ}$ | 0.550 | 0.600       | 0.650          |          |
|                                 | Ked y      | У                           | υ – φ – υ                   | 0.285 | 0.335       | 0.385          |          |
|                                 | C          | X                           | $\theta = \phi = 0^{\circ}$ | 0.290 | 0.340       | 0.390          |          |
| Chromaticity                    | Green      | У                           | $\theta - \phi - 0$         | 0.505 | 0.555       | 0.605          |          |
| coordinates                     | DI         | X                           | 0 - 1 -00                   | 0.105 | 0.155       | 0.205          | -        |
|                                 | Blue       | У                           | $\theta = \phi = 0^{\circ}$ | 0.065 | 0.115       | 0.165          |          |
|                                 | XX71 : 4   | x                           | $\theta = \phi = 0^{\circ}$ | 0.250 | 0.300       | 0.350          |          |
|                                 | White      | $\theta - \phi - 0^{\circ}$ | 0.275                       | 0.325 | 0.375       |                |          |

# 6-1. Definition of contrast ratio


 $CR(Contrast ratio) = \frac{Brightness with all pixels "White"}{Brightness with all pixels "Black"}$ 


# 6-2. Definition of response time






6-3. Definition of viewing angle





6-4. Brightness measuring point



- 1) Rating is defined as the white brightness at center of display screen.
- 2) 5 minutes after LED is turned on. (Ambient Temp.=25°C)

| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 8    |

# 7. Interface signals

# 7-1. Interface signals

| No. | Symbol      | Description                                        | Note |
|-----|-------------|----------------------------------------------------|------|
| 1   | $V_{ m DD}$ | +3.3V power supply                                 |      |
| 2   | $V_{ m DD}$ | +3.3V power supply                                 |      |
| 3   | GND         | GND                                                |      |
| 4   | GND         | GND                                                |      |
| 5   | RxIN0-      | LVDS receiver signal CH0(-)                        | LVDS |
| 6   | RxIN0+      | LVDS receiver signal CH0(+)                        | LVDS |
| 7   | GND         | GND                                                |      |
| 8   | RxIN1-      | LVDS receiver signal CH1(-)                        | LVDS |
| 9   | RxIN1+      | LVDS receiver signal CH1(+)                        | LVDS |
| 10  | GND         | GND                                                |      |
| 11  | RxIN2-      | LVDS receiver signal CH2(-)                        | LVDS |
| 12  | RxIN2+      | LVDS receiver signal CH2(+)                        | LVDS |
| 13  | GND         | GND                                                |      |
| 14  | CK IN1-     | LVDS receiver signal CK(-)                         | LVDS |
| 15  | CK IN1+     | LVDS receiver signal CK(+)                         | LVDS |
| 16  | GND         | GND                                                |      |
| 17  | RxIN3-      | LVDS receiver signal CH3(-)                        | LVDS |
| 18  | RxIN3+      | LVDS receiver signal CH3(+)                        | LVDS |
| 19  | NC          | No Connect                                         | 1)   |
| 20  | SC          | Scan direction control(GND: Normal, High: Reverse) | 2)   |

LCD connector : FI-SE20P-HFE (JAE)

1) Pin 19 is not connected to the internal display circuits. A connection on this pin will not impact the module operation in any way.

2)



SC = L



SC = H

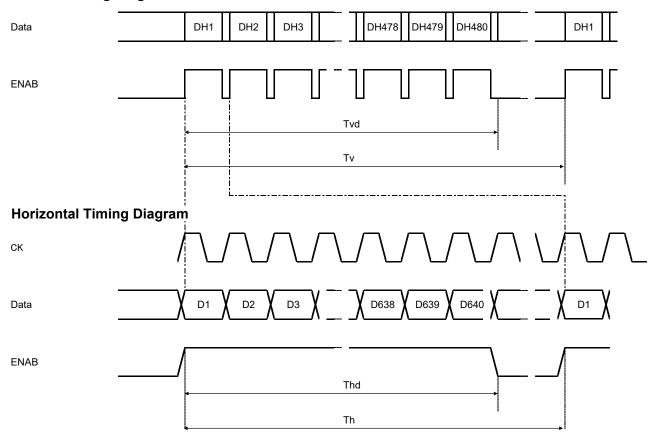
### 7-2. LED

| No. | Symbol            | Description                       | Note |
|-----|-------------------|-----------------------------------|------|
| 1   | $V_{\mathrm{IN}}$ | +24V power supply                 |      |
| 2   | $V_{\mathrm{IN}}$ | +24V power supply                 |      |
| 3   | BLBRT             | PWM signal(Brightness adjustment) |      |
| 4   | BLEN              | ON/OFF terminal voltage           |      |
| 5   | GND               | GND                               |      |
| 6   | GND               | GND                               |      |
| 7   | GND               | GND                               |      |
| 8   | GND               | GND                               |      |
| 9   | $V_{\rm IN}$      | +24V power supply                 |      |
| 10  | $V_{\rm IN}$      | +24V power supply                 |      |

LCD connector : FI-S10P-HFE (JAE)



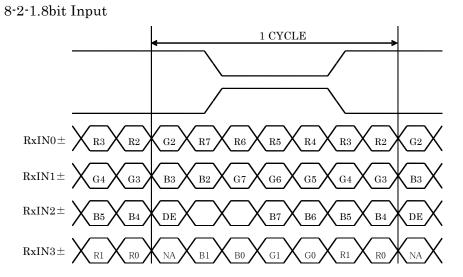
| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 9    |


### 8. Input timing characteristics

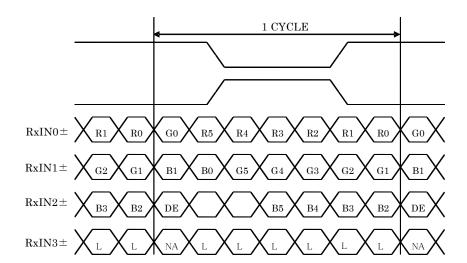
### 8-1. Timing Characteristics

|                    | Item                      | Symbol | Min.  | Typ. | Max.  | Unit    | Note |
|--------------------|---------------------------|--------|-------|------|-------|---------|------|
| Clock (CK)         | Frequency                 | 1/Tc   | 22.66 | 25.2 | 27.69 | MHz     | 1)   |
|                    | Horizontal Period         | Th     | 750   | 800  | 850   | Тс      |      |
|                    | norizontal Period         | 111    | 27.1  | 31.7 | -     | $\mu$ s | 2)   |
| Enable signal (DE) | Horizontal display period | Thd    |       | 640  |       | Тс      |      |
| (DE)               | Vertical Period           | Tv     | 490   | 525  | 590   | Th      |      |
|                    | Vertical display period   | Tvd    |       | 480  |       | Th      |      |
| Refresh rate       |                           | fv     | 50    | 60   | 70    | Hz      | 3)   |

- 1) If the display is used under the condition which is out of specifications such as higher clock frequency than specified value, there is a possibility phenomenon such as display error including white display, malfunction and no image may occur.
  - Please use the display under the conditions written in the specification.
- 2) Please set a clock frequency, a vertical dormant period, and the horizontal dormant period so that the Horizontal Period should not reach less than Min. value.
- 3) If the refresh rate reach less than Min. value, the deterioration of the display quality, flicker etc., may occur. (fv=1/Tv)

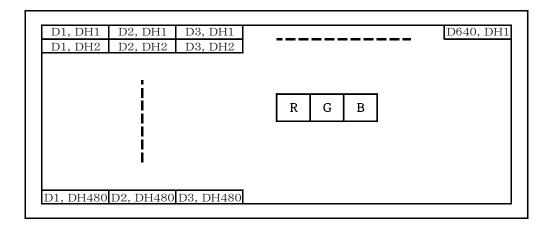

### **Vertical Timing Diagram**





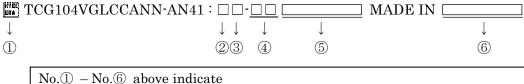

| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 10   |

8-2. Data




# 8-2-2.6bit Input




| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 11   |

8-3. Input Data Signals and Display position on the screen



#### 9. Lot number identification

The lot number shall be indicated on the back of the backlight case of each LCD.



- - ① Data matrix (For internal control purpose only)
  - ② Year code (The last digit of the year)
  - 3 Month code
  - 4 Day code
  - (5) Version number (Max. 7 characters)
  - 6 Country of origin

#### ③ Month code

| Month | Jan. | Feb. | Mar. | Apr. | May | Jun. |
|-------|------|------|------|------|-----|------|
| Code  | 1    | 2    | 3    | 4    | 5   | 6    |

| Month | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
|-------|------|------|------|------|------|------|
| Code  | 7    | 8    | 9    | X    | Y    | Z    |

### 10. Warranty

### 10-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

### 10-2. Production warranty

Kyocera warrants its LCD's for a period of 12 months from the ship date. Kyocera shall, by mutual agreement, replace or re-work defective LCD's that are shown to be Kyocera's responsibility.



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 12   |

#### 11. Precautions for use

#### 11-1. Installation of the LCD

- 1) A transparent protection plate shall be added to protect the LCD and its polarizer
- 2) The LCD shall be installed so that there is no pressure on the LSI chips.
- 3) The LCD shall be installed flat, without twisting or bending.
- 4) A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.

#### 11-2. Static electricity

- 1) Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required.
- 2) Workers should use body grounding. Operator should wear ground straps.

#### 11-3. LCD operation

- 1) The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2) Please select the best display pattern based on your evaluation because flicker, lines or nonuniformity or unevenness can be visible depending on display patterns.

#### 11-4. Storage

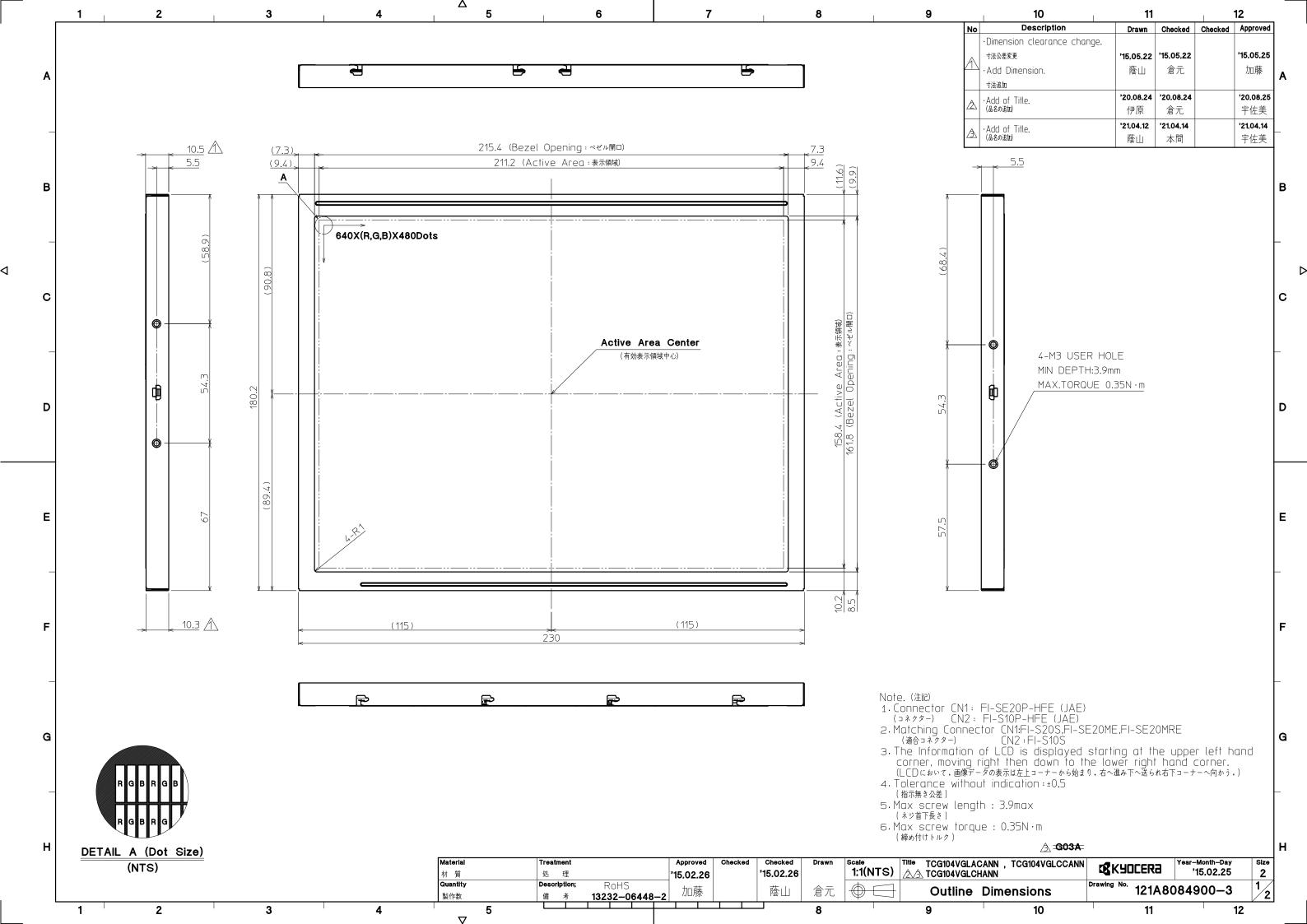
- 1) The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protect the LCD from direct sunlight or fluorescent light.
- 2) Always store the LCD so that it is free from external pressure onto it.

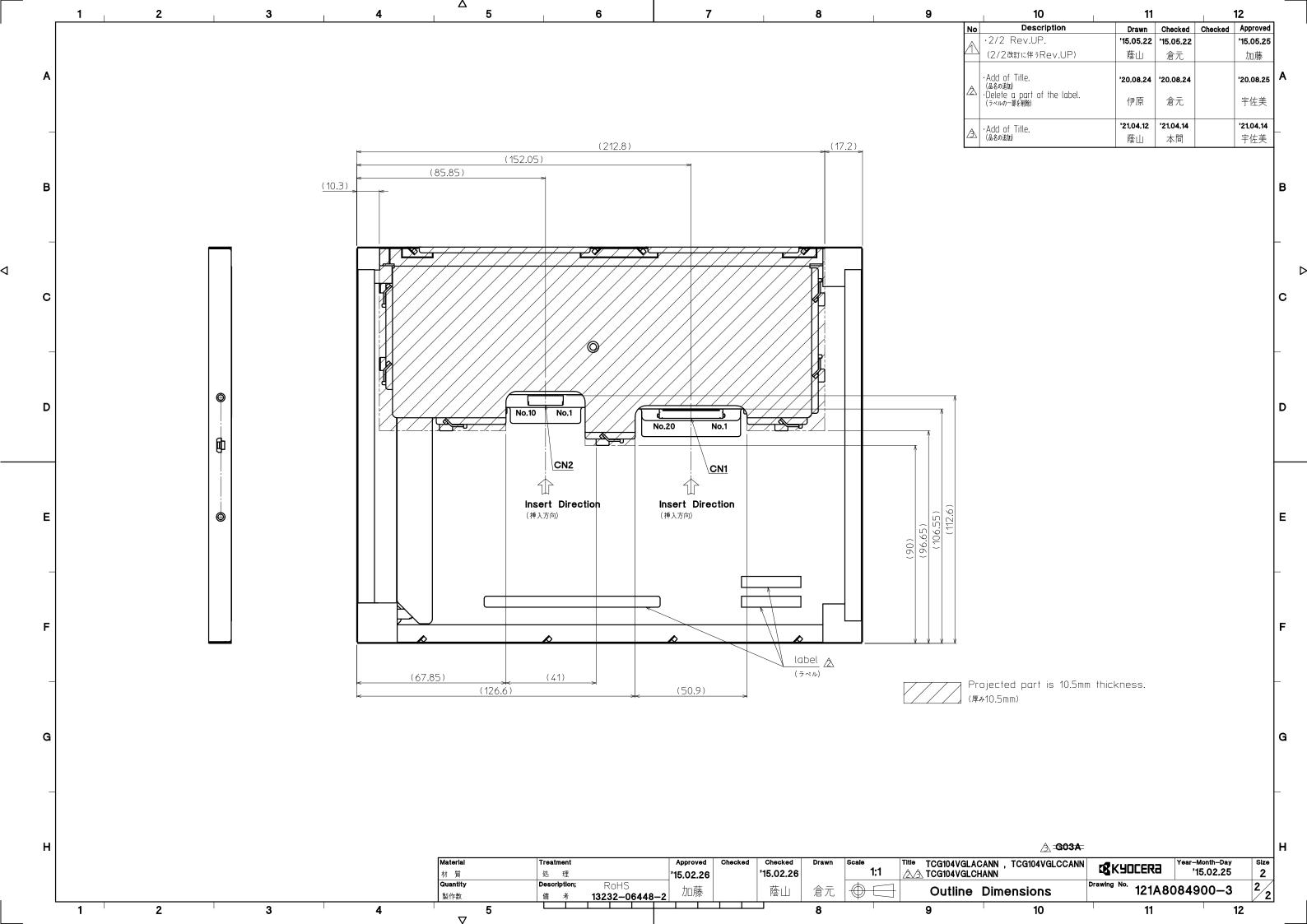
#### 11-5. Usage

- 1) <u>DO NOT</u> store in a high humidity environment for extended periods. Polarizer degradation bubbles, and/or peeling off of the polarizer may result.
- 2) The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3) The LCD screen may be cleaned by wiping the screen surface with a soft cloth or cotton pad using a little Ethanol.
- 4) Water may cause damage or discoloration of the polarizer. Clean condensation or moisture from any source immediately.
- 5) Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizer.
- 6) Do not disassemble LCD because it will result in damage.
- 7) This Kyocera LCD has been specifically designed for use in general electronic devices, but not for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 8) Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend using screen saver etc. in cases where a solid-base image pattern must be used.
- 9) Liquid crystal may leak when the LCD is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body; rinse it off right away with water and soap.



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E1YAG67-01 | TCG104VGLCCANN-AN41 | 13   |


# 12. Reliability test data


| Test item                      | Test condition                       | Test time | Jud                                                  | gement                                    |
|--------------------------------|--------------------------------------|-----------|------------------------------------------------------|-------------------------------------------|
| High temp.<br>atmosphere       | 80°C                                 | 240h      | Display function Display quality Current consumption | : No defect<br>: No defect<br>: No defect |
| Low temp.<br>atmosphere        | -30°C                                | 240h      | Display function Display quality Current consumption | : No defect<br>: No defect<br>: No defect |
| High temp. humidity atmosphere | 40°C 90% RH                          | 240h      | Display function Display quality Current consumption | : No defect<br>: No defect<br>: No defect |
| Temp. cycle                    | -30°C 0.5h<br>R.T. 0.5h<br>80°C 0.5h | 10cycles  | Display function Display quality Current consumption | : No defect<br>: No defect<br>: No defect |
| High temp. operation           | 80°C                                 | 500h      | Display function Display quality Current consumption | : No defect<br>: No defect<br>: No defect |

- 1) Each test item uses a test LCD only once. The tested LCD is not used in any other tests.
- 2) The LCD is tested in circumstances in which there is no condensation.
- 3) The reliability test is not an out-going inspection.
- 4) The result of the reliability test is for your reference purpose only.

  The reliability test is conducted only to examine the LCD's capability.







| Spec No. | TQ3C-8EAF0-E2YAG67-01 |
|----------|-----------------------|
| Date     | August 29, 2024       |

# **KYOCERA INSPECTION STANDARD**

TYPE: TCG104VGLCCANN-AN41

# KYOCERA CORPORATION

| Original         | Designed by : Eng | Confirmed by : QA dept. |          |           |
|------------------|-------------------|-------------------------|----------|-----------|
| Issue Date       | Prepared          | Checked                 | Approved | Approved  |
| January 22, 2018 | K. Komurasaki     | T. Fukui                | M. Kato  | T. Sawada |



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E2YAG67-01 | TCG104VGLCCANN-AN41 | -    |

### Revision record

|          | Revision record   |          |             |                       |                       |                         |  |
|----------|-------------------|----------|-------------|-----------------------|-----------------------|-------------------------|--|
|          | Date              | Design   | ned by : En | igineering dept.      |                       | Confirmed by : QA dept. |  |
|          |                   | Prepared |             | Checked               | Approved              | Approved                |  |
| Augu     | st 29, 2024       | K. Ko.   | murasaki    | T. Fukui              | M. Kato               | T. Sawada               |  |
| Rev. No. | Date              | Page     |             | De                    | scriptions            |                         |  |
| 01       | Aug 29, 2024      | Cover    | Change      |                       |                       | CERA DISPLAY            |  |
|          | 1100 = 0, = 0 = 1 | page     |             | ATION to KYOCEI       |                       |                         |  |
|          |                   | 1        | Dot defect  |                       |                       |                         |  |
|          |                   | _        |             | he definition of blac | ck dot defect and add | d white dot defect.     |  |
|          |                   |          | Definition  | of circle size        | on dot dereet did da  | a willie dor dereet.    |  |
|          |                   |          |             | he figure and add a   | a description.        |                         |  |
|          |                   |          |             |                       | <b>1</b>              |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |
|          |                   |          |             |                       |                       |                         |  |

| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E2YAG67-01 | TCG104VGLCCANN-AN41 | 1    |

# Visuals specification

| 1) Note         |            |                                                                                            | No.4.                                                                               |  |  |  |
|-----------------|------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| General         | 1. Custom  | or identified anomalic                                                                     | Note es not defined within this inspection standard shall be                        |  |  |  |
| General         |            | reviewed by Kyocera, and an additional standard shall be determined by mutual consent.     |                                                                                     |  |  |  |
|                 |            | This inspection standard about the image quality shall be applied to any defect within the |                                                                                     |  |  |  |
|                 |            | -                                                                                          |                                                                                     |  |  |  |
|                 |            |                                                                                            | pplicable to outside of the area.                                                   |  |  |  |
|                 | _          | on conditions                                                                              |                                                                                     |  |  |  |
|                 | Lumina     |                                                                                            | : 500 Lux min.                                                                      |  |  |  |
|                 |            | ion distance                                                                               | : 300 mm.                                                                           |  |  |  |
|                 | Temper     |                                                                                            | : 25 ± 5℃                                                                           |  |  |  |
| D 4 11 4        | Direction  | 1                                                                                          | Directly above                                                                      |  |  |  |
| Definition of   | Dot defect | Bright dot defect                                                                          | The dot is constantly "on" when power applied to the                                |  |  |  |
| inspection item |            |                                                                                            | LCD, even when all "Black" data sent to the screen.                                 |  |  |  |
|                 |            |                                                                                            | Inspection tool: 5% Transparency neutral density filter.                            |  |  |  |
|                 |            |                                                                                            | Count dot: If the dot is visible through the filter.                                |  |  |  |
|                 |            |                                                                                            | Don't count dot: If the dot is not visible through the filter.                      |  |  |  |
|                 |            |                                                                                            | RGBRGBRGB                                                                           |  |  |  |
|                 |            |                                                                                            | RGBRGB dot defect                                                                   |  |  |  |
|                 |            |                                                                                            | RGBRGBRGB GROOT                                                                     |  |  |  |
|                 |            | Black dot defect                                                                           | The dot is constantly "off" when power applied to the                               |  |  |  |
|                 |            |                                                                                            | LCD, even when all "White" data sent to the screen.                                 |  |  |  |
|                 |            |                                                                                            | Similar size compared to bright dot.                                                |  |  |  |
|                 |            | White dot defect                                                                           | Pixel works electrically, however, circular/foreign particle                        |  |  |  |
|                 |            | (Circular/foreign                                                                          | makes dot appear to be "on" even when all "Black" data is                           |  |  |  |
|                 |            | particle)                                                                                  | sent to the screen.                                                                 |  |  |  |
|                 |            | Adjacent dot                                                                               | Adjacent dot defect is defined as two or more bright dot                            |  |  |  |
|                 |            |                                                                                            | defects or black dot defects.                                                       |  |  |  |
|                 |            |                                                                                            | RGBRGBRGB                                                                           |  |  |  |
|                 |            |                                                                                            | RGBRGBRGB —                                                                         |  |  |  |
|                 |            |                                                                                            | R G B R G B R G B                                                                   |  |  |  |
|                 |            |                                                                                            |                                                                                     |  |  |  |
|                 | External   | Bubble, Scratch,                                                                           | Visible operating (all pixels "Black" or "White") and non                           |  |  |  |
|                 | inspection | Foreign particle                                                                           | operating.                                                                          |  |  |  |
|                 |            | (Polarizer, Cell,                                                                          |                                                                                     |  |  |  |
|                 |            | Backlight)                                                                                 |                                                                                     |  |  |  |
|                 |            | Appearance                                                                                 | Does not satisfy the value at the spec.                                             |  |  |  |
|                 |            | inspection                                                                                 |                                                                                     |  |  |  |
|                 | Definition | Definition of                                                                              | of circle size Definition of linear size                                            |  |  |  |
|                 | of size    |                                                                                            | <b>^</b>                                                                            |  |  |  |
|                 |            |                                                                                            | , v ,                                                                               |  |  |  |
|                 |            | (                                                                                          | X T                                                                                 |  |  |  |
|                 |            |                                                                                            | ( • <b>/</b> • <b>/</b> • <b>/</b> • <b>/</b> • • • • • • • • • • • • • • • • • • • |  |  |  |
|                 |            |                                                                                            | €                                                                                   |  |  |  |
|                 |            | a: major axis                                                                              | , b: minor axis                                                                     |  |  |  |
|                 |            | d = (a                                                                                     | + b) / 2                                                                            |  |  |  |



| Spec No.              | Part No.            | Page |
|-----------------------|---------------------|------|
| TQ3C-8EAF0-E2YAG67-01 | TCG104VGLCCANN-AN41 | 2    |

# 2) Standard

| 2) Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                         |                      |                                              |              |                        |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|----------------------|----------------------------------------------|--------------|------------------------|-------------------|
| Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Inspection item                         |                      | Judgement standard                           |              |                        |                   |
| Defect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dot        | Bright dot defect                       |                      | Acceptable number : 4                        |              |                        |                   |
| (in LCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | defect     |                                         |                      | Bright dot spacing                           |              |                        | n or more         |
| glass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Black dot defect                        |                      | Acceptable number : 5                        |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | Black dot spacing : 5 mm or more             |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2 dot join                              | Bright dot<br>defect | Acceptable number : 2  Acceptable number : 3 |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         | Black dot<br>defect  |                                              |              | : 3                    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 3 or more dots join                     |                      | Acceptable number : 0                        |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Total dot defects                       |                      | Acceptable number : 5 Max                    |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Others     | White dot, Dark dot                     |                      |                                              |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | (Circle)                                |                      | Size (mm)                                    |              | Acceptable number      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | d ≦ 0.2                                      |              | (Neglected)            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.2 < d \le 0.4$                            |              | 5                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.4 < d \le 0.5$                            |              | 3                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | 0.5 < d                                      | 5 < d        |                        | 0                 |
| External                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inspection | Polarizer (                             | Scratch)             |                                              |              |                        |                   |
| (Defect on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                         |                      | Width (mm)                                   | Length (1    | mm)                    | Acceptable number |
| Polarizer or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                         |                      | W ≤ 0.1                                      |              | (Neglected)            |                   |
| between Polarizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                         |                      | $1 \ 0 \ 1 < W > 0 \ 3$                      |              | $\leq 5.0$ (Neglected) |                   |
| and LCD glass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                         |                      |                                              | 5.0 < L<br>- |                        | 0                 |
| and DCD glass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                         |                      | 0.3 < W                                      |              |                        | 0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Polarizer (Bubble)                      |                      |                                              |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | Size (mm)                                    |              | Acceptable number      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | d ≦ 0.2                                      |              | (Neglected)            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.2 < d \le 0.3$                            |              | 5                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.3 < d \le 0.5$                            |              | 3                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | 0.5 < d                                      |              | 0                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      |                                              |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Foreign particle (Circular shape)       |                      | Size (mm)                                    |              | Acceptable number      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | d ≦ 0.2                                      |              | (Neglected)            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.2 < d \le 0.4$                            |              | 5                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.4 < d \le 0.5$                            |              | 3                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.5 < 	ext{ d}$                             |              | 0                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _                                       |                      |                                              |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Foreign particle (Linear shape) Scratch |                      | Width (mm) Length                            |              | (mm) Acceptable number |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $W \leq 0.03$                                |              | (111111/               | (Neglected)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | ₩ = 0.09                                     | L ≦ 2.0      |                        | (Neglected)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | $0.03 < W \le 0.1$                           | 2.0 < L      |                        | 3                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      |                                              | 4.0 < L      |                        | 0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      | 0.1 < W                                      | _            |                        | (According to     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      |                                              |              |                        | circular shape)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |                      |                                              | 1            |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Color variation                         |                      | Not to be significantly visible.             |              |                        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | (Mura)                                  |                      | Consultation shall be held as necessary.     |              |                        |                   |
| Carrott of the state of the sta |            |                                         |                      |                                              |              |                        |                   |

